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ABSTRACT

Conventionallyprogrammeddigital computerscanprocessnumberswith
great speedand precision,but do not easily recognizepatternsor imprecise
or contradictory data. Instead of being programmedin the conventional
sense,artificial neural networks(ANNs) are capableof self-learningthrough
exposureto repeatedexamples.However,the training of an ANN can be a
time consumingand unpredictableprocess.

A generalmethod is beingdevelopedby the author to matethe adapt-
ability of the ANN with the speedand precision of the digital computer.
This method hasbeensuccessfulin building feedforwardnetworksthat can
approximatefunctions andtheir partial derivativesfrom examplesin a single
iteration. The generalmethod alsoallowsthe formation of feedforwardnet-
works that canapproximate the solution to nonlinearordinary and partial
differentialequationsto desiredaccuracywithout the needof examples.It is
believedthat continuedresearchwill produceartificial neural networksthat
canbeusedwith confidencein practicalscientificcomputingand engineering
applications.
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INTRODUCTION

Artificial neural networks (ANNs) have provento be versatile tools for ac-
complishingwhat could be termedhigher order taskssuchaspattern recog-
nition, classification,and visualprocessing.However,conventionalwisdom
hasheld that networks areunsuited for use in morepurely computational
tasks,suchas mathematicalmodelling and physicalanalysisof engineering
systems.Certainly the biologicalunderpinningsof the neural network con-
cept suggestthat networkswouldperform best at tasksat which biological
systemsexcel,and worseor not at all at other tasks.

Contrary to opinion the author believes that continued research into

the approximation capabilities of networks will enable the neural network

paradigm, with all of its advantages in behavior and adaptability, to be

mated to the more purely computational paradigms of mathematically ori-

ented scientific programming and analysis. Additionally, it is felt that the

thorough investigation of network approximation capabilities will benefit the

network field and connectionism in general.

In a field as conceptually difficult as the study of artificial neural networks,

it is best to start investigation with supervised learning, test the established

premises, and alter them to circumvent pitfalls in implimentation.

FUNCTION APPROXIMATION

Learning as Function Approximation

Central to the author's research approach is the view that supervised learning

in artificial neural networks is equivalent to the problem of approximating

a multivariate function and that learning should be able to be explained

by approximation theory. Approximation theory deals with the problem of

approximating or interpolating a multivariate function. This approach has

been considered by other researchers in the field of ANNs [1]-[4]. However,

the author extends this assumption of function approximation by assuming

that ANNs can model discontinuous multivariate functions and should be at

least as accurate and numerically efficient as existing computational tech-

niques used in science and engineering. Also, ANN behavior and adaptation

difficulties, from supervised learning to machine vision, should be amenable

to the standard error analysis techniques used in numerical analysis.

In a general sense experiments, analytical methods, and computational

methods can be considered to be forms of function approximation. The

governing equations derived from analytical methods axe a compact repre-

sentation of the functions that model some particular phenomena observed

in experiments. Computational techniques are used to approximate the func-

tion or functions that satisfy the governing equations. The graphs and tables
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madefrom experimentsarerepresentationsof the functions that underlie ob-

served physical phenomena.

PROGRAMMABLE ARTIFICIAL NEURAL NETWORKS

If we are to assume that ANNs are as valid as established computational tech-

niques, then ANNs should be evaluated in the same manner as are computa-

tional techniques. In evaluating the capabilities of a new numerical method,

it is prudent to first apply it to the solution of algebraic and ordinary and

partial differential equations of known behavior. This same approach can be

used for ANNs since the solution of algebraic and differential equations can

be viewed as the approximation of a function that must satisfy the equation

in question subjected to boundary and/or initial conditions.

Applying an ANN to the solution of an algebraic or differential equation

effectively uncouples the influences of the quality of data samples, network

architecture, and transfer functions from the network approximation perfor-

mance. The solution of equations also allows us to study the influence of

constraining the connection weights. The most immediate benefit in this

approach would be the construction of networks that can approximate the

solution to desired equations without the need for examples. This would be

of value in engineering applications since considerable effort may be saved

if the equations governing a physical process can be directly incorporated

into the neural network architecture without the need of examples, thereby

shortening or even eliminating the learning phase.

The author has previously reported the use of the piecewise linear hard

limit transfer function [5] in solving model algebraic and linear ordinary

differential equations by the feedforward architecture [7]. In this report the

author will use the recurrent artificial neural network (RANN) architecture to

model a chaotic system by solving a nonlinear ordinary differential equation

known as Duffing's equation.

APPROACH

A simple RANN consists of two layers of processing elements as illustrated

in Fig. 1 for two coupled time-dependent variables u and v, where I denotes

the input layer, and II denotes the output layer. Generally speaking, the

inputs u and v, fed into layer I at time t'_, are operated on by the processing

elements (PEs) and then multiplied by the constant connection weights a_q.

The coefficient a_q is the connection weight between the ith neuron of layer I

and the qth neuron of layer II. As a result, the outputs of layer I, multiplied

by the connection weights, are input to layer II PEs. The output of layer II

neurons are the values of the dependent variables at time t _+1. These values

are in turn fed back into the input layer I for the next iteration.
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The dynamic behavior of sucha RANN is governedby the value of the
connectionweights,the type of processingelementsin the RANN, and the
transfer functions used. In this study we restrict ourselvesto using the
piecewiselinear transfer function in all layersof the RANN, sinceit is oneof
the simplestfunctions to implementon both digital and analogforms [8].

The hard limit function T_(u) (Fig. 2) operatingon the dependentvari-
able u for the qth neuron of the Kth layer can be modelled by the following

equations:

-1.0

+1.0

for (q < -1.0

for -1.0 _< _q _< 1.0

for _q > 1.0

where

q = E aiq tLi

i

_q = H aiq tti

i

for additive neurons

for multiplicative neurons

By correctly assigning different values to the RANN connection weights,

one is able to integrate a system of coupled recurrent relations into the archi-

tecture without the need of training. We will now show how to obtain such

recurrent relations from a system of ordinary differential equations.

Duttlng's Equation

The inhomogeneous Duffing's equation describes the forced motion of a par-

ticle between two equilibrium states and can be written as the following

nondimensional second-order ordinary differential equation

_Xdt----_+ 2# dx___ 21(x- x 3) = F0 cos (_t) (1)

where t, x, #, F0, and _o represent time, displacement, damping coefficient,

force amplitude, and frequency of excitation respectively. The importance of

this equation is that its chaotic and nonchaotic behavior has been extensively

examined by theoretical [9], experimental [10], and numerical methods [6],

[111-[13].
In order that Duffing's equation can be more easily approached by the

RANN programming method and so that we may obtain particle displace-

ment, velocity, and acceleration, Eq.(1) is reduced to a system of two first-

order equations by the following change of variables

x 1 dx 1 . 1 d2x x2dy
s=-- , y-- ---x and w= --

I_ 1 t_ 2 dt x2 x3 dt 2 x3 dt
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wherenl, _2, and _3 are constants used to scale the values of the new vari-

ables. Therefore, Eq.(1) becomes

d$

-- = _y (2)
dt

dYdt 1( ) F0 (wt) a3- = --w (3)2#y "_ X--'- S -- /g1283 -{- _ COS

Zg4 E2 K2

K2
where K 4 = --.

K1

It will now be demonstrated how the RANN architecture can be used to

approximate the solution to Eq.(2) and Eq.(3) for arbitrary coefficients.

Integration of Duffing's Equation

For this problem the initial value problem of Eqs.(2) and (3) will be inte-

grated by the explicit MacCormack method [14] which is a finite-difference,

predictor-corrector scheme commonly used in the solution of time-dependent

fluid dynamics equations. The application of the MacCormack technique to

a general first order ordinary differential equation

du

dt f(u,t)=O ,

where f is some arbitrary function of the dependent variable u and indepen-

dent variable t, results in

Predictor: u" = u _ + Atf(un,t '_)

Corrector: u_+l _ 1 u* u _ At
--_(un+ +Atf(u*,t*))= +-_-(f(u'_,tn)+f(u*,t*))

where the superscripts denote the time level and t* = t '_ + At.

Application of the MacCormack method to Eqs.(2) and (3) results in

8n+l

y*

yn+l

= 8_ + AtA(s n, yL tn)
At

= s'_+-_--(fl(s'_,y'_,t'_)+fl(s*,y*,t*))

= v_ + Atf_(, _, v_, t_)
At

= yn+-_-(f2(s'_,yn, t'_)+f2(s*,y*,t*))

where

fl(s,y,t) = tc4y and
f2(s'Y't)= -2ttY + _ _2
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Substitution of the expressionsfor fl, f2, s*, and y* into the equations for

s n+l and y,+l results in the following algebraic system,

= (4)
r n ---- (s*) 3 ---- (s n -4- _4At yn)3 (5)

s "_+_ = H_s _ + H2y _ + H3p _ + H4 cos (nwAt) (6)

y_+l = Hss _ + H6y _ + Hzp _ + Hsr _ + H9 cos (nwAt) +

H10 cos ((n + 1)wAt) (7)

FoAt 2
t14-

2t¢1

_13 At
Hz = ----- (1 - 2#At)

a2 4

The coefficients/-/1 through//10 are

At 2 _At 2
H_=I+_ , //2=tc4At(1-#At) , /-/3-- 4

/-/5= At(1-#At) , //6=l-2#At+2#2At _+ 4' 2t_4

Hs nl 3 At Fo At
' ---_¢2 4 ' //9- _2 2 (1-2#At)

Fo At
H_o - , (S)

t¢2 2

If At is required to be constant, then the time-dependent coefficients of Eq.(8)

become constants for specific values of #, F0, nl, _2, and _3. Equations (4)

through (7) are the linear and nonlinear algebraic equations that approximate

Duffing's equation and must be modelled by the RANN.

Network Approximation of Duffing's Equation

To compare against previous numerical studies of Duffing's equation, we

require only that the RANN generate values for particle displacement and

velocity. Figures 3 - 5 show the connections required in a constrained RANN

modelling Eqs.(4) through (7) respectively. It is understood that the network

output is fed back to the input layer though the connections are not shown

in the figures. An initial time t o = 0 is assumed.

Note that the magnitude of all inputs and outputs are scaled to be less

than value 1 so that hard limits may be used in the processing elements.

This constraint on the magnitude of the dependent variables s '_, y'_, p'_, and

r n requires that

nl>lx],_+At _-,_ , _2> -_- , n3> _ (9)
max

Equations (4) and (5) possess cubic time-dependent unknowns that are

approximated by the RANN using the multiplicative neuron model also

known as the Pi neuron (Fig. 3) [5]. In traditional ANNs, the Pi neu-

rons are used to achieve greater processing power by using more complex

connections.
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The fully assembledRANN is shownin Fig. 6. Updated valuesof the
cosinefunctions ( cos(nwAt) and cos((n + 1)wAr) ) must be input at each
iteration in the RANN.

RESULTS

The RANN of Fig. 6 was constructed and run with a fixed damping value

of # = 0.084 and fixed forcing amplitude of F0 = 0.178. Previous results

of the two-well potential system [6] indicate displacement ranging between

+ 2.0 and velocity ranging between + 1.0. Assuming that At < [x[m_ Eq.(9)

allows the use of *;1 = 4.0, _;2 = 2.0, and *;3 = 1.0. Initial conditions were

set for x(0) = 1.0 and _(0) = 0.0, except for Fig. 8 where x(0) = 0 and

_(0) = 1.0 for the coexisting global attractor. To ensure that steady-state

solutions were displayed, approximations were run for 900 periods, T, based

on the forcing frequency w (T = 27r/w). All computations were done in

double precision and all test cases were run in less than 40 real time seconds

on a Sparc 10 SX Model 512 workstation.

RANN Simulation Results

Figures 7 - 9 compare the constructed RANN output (x = *;is and x = _2y)

with the numerical results of Masoud and Asfar [6], for the same parame-

ter values and initial conditions. Here, as with reference [6] the damping

and excitation amplitude are based on the work presented by Pezeshki and

Dowell [13]. Throughout the simulation the time step used in the RANN

was identical to that used in the Masoud and Asfar study, At = T/100. For

clarity, plots of time histories have been excluded. Phase plane trajectories,

as well as Poincar@ maps are shown and compared in cases where they are

shown by reference [6].

Figure 7 starts with w = 1.020 at which the period of the oscillator is

equal to 1 (period 1 oscillation) and doubles as w decreases. Thus we ob-

serve period 2, period 4, and period 8 oscillations, until the system evolves

into a coexisting global period 5 motion (Fig. 8) at which the system oscil-

lates between the two equilibrium states (:_, x) respectively (0,-1) and (0, 1).

Figure 9 describes the first region of chaotic oscillations starting at w = 0.865

and ending at w = 0.780.

CONCLUSIONS

Using the piecewise linear transfer function and additive and multiplicative
neurons the author was able to construct a recurrent artificial neural network

that was capable of accurately solving a complex nonlinear problem. The

solution of the inhomogenous Duffing's equation was shown as a numerical
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exampleand comparedwell with the computational resultsof Masoudand
Asfar. This wasdonewithout the needfor data or conventionaltraining. By
establishinga direct link betweena well known numericalmethod and the
operationof a RANN webelieveit maybepossibleto link commonnumerical
methodsfrom computationalmechanicsto theoperationof themorepopular
ANN paradigms.
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PE LAYER I PE LAYER II

n n+l

n _ n+l

Figure 1: Basic RANN architecture.
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Figure 4: RANN representation of the

recurrent equation for s n+l.

Figure 2: Hard limit transfer function.
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Figure 3: RANN representation of the

nonlinear equations for p'_ and r '_.
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Figure 5: RANN representation of the

recurrent equation for yn+l.
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[ cos(ncoAt) ]_,

srt"_ _ "_sn+l

S n _.__ ...¢_S n+l

_.+ yn+lyn._._
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I II Ill IV

Figure 6: Full RANN assembly for the

MacCormack scheme applied to Duff-

ing's equation.

(c)

Figure 7: Comparison of phase space

trajectories from Masoud and Asfar

(top set) and the RANN (bottom set).

From left to right: (a) w = 1.020 period

1, (b) w = 1.000 period 2, (c) w = 0.963

period 4.
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Figure 8: Phase space trajectories from

Masoud and Asfar (top set) and the

RANN (bottom set). From left to right:

coexisting (a) w = 0.957 period 8, (b)

w = 0.957 global period 5.
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Figure 9: Comparison of phase space

trajectories and Poincar_ maps in the

first chaotic region from Masoud and

Asfar (top set) and the RANN (bot-

tom set). From left to right: (a) w =

0.865 chaotic higher frequency bound-

ary, (b) w = 0.780 chaotic lower fre-

quency boundary•
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